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ABSTRACT

Sorting and scanning are two fundamental primitives for constructing highly parallel
algorithms. A number of libraries now provide implementations of these primitives for

GPUs, but there is relatively little information about the performance of these imple-

mentations.
We benchmark seven libraries for 32-bit integer scan and sort, and sorting 32-bit val-

ues by 32-bit integer keys. We show that there is a large variation in performance between

the libraries, and that no one library has both optimal performance and portability.
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1. Introduction

While GPU programming languages like CUDA [9] and OpenCL [5] make it easy to

write code for embarrassingly parallel problems in which all elements are indepen-

dent, it is less easy to solve problems requiring cooperative parallelism. One of the

most important primitives for such problems is the scan, or parallel prefix sum [2].

Sorting is a fundamental tool in algorithm design, and has been successfully applied

in GPU computing [10].

There are now a large number of libraries that have been written on top of

OpenCL and CUDA to provide scan, sorting and other parallel primitives. However,

these primitives are challenging to optimize, and the implementations vary widely

in performance. We provide benchmark results of these libraries so that users can

make informed decisions about whether a particular library will meet their needs,

or will become a bottleneck.

We have chosen three specific problems: scanning 32-bit integers, sorting 32-bit

unsigned integers, and sorting 32-bit values by 32-bit unsigned integer keys. For

current GPU memory sizes, 32 bits is enough to represent an array index, which is
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why we use this size. Note that when sorting large objects, it is more bandwidth-

efficient to first sort 32-bit indices into the array and then apply the resulting

permutation.

2. Setup

In our experiment we have tested seven libraries: CLOGS 1.3.0a, VexCL 1.3.1b and

Boost.Compute 0.2c use OpenCL; Bolt 1.1 also uses OpenCL, but relies on AMD-

specific extensions; and Thrust 1.7.1d, CUB 1.3.1e and Modern GPUf use NVIDIA’s

CUDA API. All the libraries have C++ interfaces.

CLOGS is a small library that implements only sort and scan. It relies on auto-

tuning to achieve good results across a range of GPUs, but it is somewhat rigid: it

is only possible to sort or scan a small set of built-in types, and it is not possible to

provide custom addition or comparison operators.

VexCL and Boost.Compute are C++ template libraries that provide more flex-

ibility than CLOGS, synthesizing OpenCL kernels based on arguments provided by

the user. VexCL also provides a choice of CUDA and OpenCL backends, but we

only benchmark the OpenCL backend as a previous benchmark of VexCL found

little difference between the backends for large problem sizes [3].

Thrust is an STL-like library which has backends for CUDA and for multi-core

CPUs. CUB and Modern GPU are more closely tied to CUDA, and do not hide

it under an abstraction layer. Modern GPU is intended to be easier to read and

modify, while CUB aims for maximum performance [6].

The libraries differ in their choice of algorithms. ModernGPU and VexCL use

mergesort [1, 4] while the other libraries use radix sort [8]. For scanning, CUB uses

a chained scan [11] with enhancements to reduce propagation latency, which runs

in a single pass and only requires 2N data accesses for N inputs. Boost.Compute

uses a three-pass scan-then-propagate strategy (4N data accesses), while the other

libraries use a three-pass reduce-then-scan strategy (3N data accesses) [7].

We use three GPUs in our benchmarks: an AMD Radeon R9 270, an NVIDIA

GeForce GTX 480 and an NVIDIA Tesla K40. The first two are desktop GPUs while

the K40 is a server GPU. The R9 270 is based on the GCN architecture, the GTX

480 on the older Fermi architecture, and the K40 on the newer Kepler architecture.

Table 1 summarizes the theoretical performance characteristics of each device.

For each benchmark and library, we use the same approach. After allocating

and populating buffers, we perform ten iterations as a warmup pass, and wait for

completion. This is to allow memory allocations to be finalized and the GPU to be

ahttp://clogs.sourceforge.net
bhttps://github.com/ddemidov/vexcl
chttps://github.com/kylelutz/compute; it is not currently an official Boost library
dShipped as part of CUDA 6.0
ehttp://nvlabs.github.io/cub/
fhttp://nvlabs.github.io/moderngpu/, revision b6b3ed5
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Table 1. GPUs used in the benchmarks. The Tesla K40 was run with ECC disabled.

Device RAM Bandwidth Single precision

(GiB) (GiB/s) (TFLOP/s)

Radeon R9 270 2 179.2 2.3

GeForce 480 GTX 1.5 177.4 1.345

Tesla K40 12 288 4.29

brought to its maximum frequency. We then perform 50 iterations of the algorithm

before again synchronizing the CPU and GPU. The runtime is measured between

the two synchronization points. We thus do not measure the time for data transfer

between the host and GPU; we assume that in practical use the sort or scan forms

part of a larger GPU algorithm.

For the sorting algorithms, we start by copying the data from pre-generated

random buffers, and this copy time is included in the measurements; but since the

sort is far more expensive than the initial copy, this does not affect results by more

than a few percent. Where possible, we also allocate any scratch buffers required

by the algorithm outside the loop. Currently only CLOGS and CUB support this.

We have used a range of problem sizes, consisting of powers of two, and 1–

9 times a power of ten, ranging from 104 to 108. GPUs are poorly suited to small

problem sizes, and we consider the results for the larger sizes to be more interesting;

nevertheless, we include the results for the smaller sizes since it shows how well the

different libraries cope with limited parallelism. The power-of-two sizes are included

because they expose some unexpected sensitivities to problem size.

3. Results

3.1. Scan

Figure 1 shows the results for scanning 32-bit elements. On the R9 270, CLOGS

achieves the highest throughput, while VexCL performs the best for problem sizes

under two million elements. Bolt’s performance is surprisingly poor, given that it is

provided by AMD and so might be expected to be well-tuned for AMD hardware.

On the 480 GTX, CUB has the highest performance, followed by Modern GPU.

CLOGS is the fastest of the OpenCL libraries, and outperforms NVIDIA’s Thrust

library. For the largest problem sizes, VexCL and Boost.Compute achieve less than

20% of the performance of CUB. The picture for the K40 is essentially the same,

except that the performance drop for Modern GPU at 224 elements is more pro-

nounced.

CUB’s high performance is due to only requiring 2N global memory accesses.

It will be interesting to investigate whether this algorithm can be written in a

way that is guaranteed to work on all OpenCL implementations, where there are

fewer guarantees on independent forward progress. While a similar algorithm has

been implemented in OpenCL, it required hardware-specific configuration changes

to prevent deadlock [11].
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Fig. 1. Scan performance for 32-bit elements

3.2. Sort

Figure 2 shows the results for sorting 32-bit unsigned integer keys. On the R9 270,

CLOGS and Bolt are able to handle problem sizes all the way up to 100 million

elements, while VexCL and Boost.Compute suffer from poor performance or run out

of memory on much smaller problems. Surprisingly, the 480 GTX has less memory,

yet does not display these effects. The cause may thus be poor memory management

in the driver rather than excessive memory use in the library. VexCL has the best

performance on problem sizes that it handles, while CLOGS does best on 10 million

or more elements. As for scan, the AMD-specific Bolt is not able to keep up with

generic libraries.

On the NVIDIA GPUs, CUB is again the fastest library for large problems,
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but this time Modern GPU does better on small problem sizes. Modern GPU and

VexCL use O(N logN) mergesort rather than O(N · bits) radix sort, and this is

reflected in the better performance on smaller problems and a decrease in sorting

rate as the problem size increases beyond that needed to saturate the GPU.

One difference between the two GPUs is that CLOGS eventually surpasses Mod-

ern GPU and VexCL on the 480 GTX, but not on the K40. In fact, CLOGS sorts

fewer keys per second on the K40 than the 480 GTX, even though the K40 has

better theoretical performance, and in spite of the autotuning support in CLOGS.

This suggests that tuning Fermi-optimized code for Kepler may require more than

just tweaking a few tuning parameters.

While the other libraries all achieve acceptable performance (generally at least
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Fig. 2. Sort performance for 32-bit unsigned integers
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40% of the fastest), Boost.Compute performs poorly on all three GPUs, and in some

cases achieves only 10% of the best performance.

3.3. Sort by key
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Fig. 3. Sort by Key performance for 32-bit unsigned integer keys and values

Figure 3 shows the results for sorting 32-bit values by 32-bit keys. The results

for the R9 270 show a number of interesting phenomena. Firstly, VexCL and

Boost.Compute show the same pattern of scaling up to a certain point, beyond

which performance degrades drastically, followed by out-of-memory errors. While

less obvious, the other two libraries also show this falloff beyond 70 million elements.

Beyond this point, the total memory allocated exceeds the memory capacity of the
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GPU (since we need the unordered data, the sorted data, and a scratch buffer for

the keys and the values), and the driver is presumably swapping out GPU memory

to allow the kernels to run.

Secondly, the performance of CLOGS and Bolt is highly sensitive to the problem

size. Sizes that are powers of two reduce the throughput massively, in some cases by

75%. We do not know why these problem sizes should cause such poor performance.

On the NVIDIA GPUs, the situation is generally similar to sorting just keys:

Modern GPU is fastest for small sizes, CUB for larges sizes, and CLOGS does

worse on the K40 than the 480 GTX. One difference is that Modern GPU loses

performance between 6 million and 16 million elements on the K40. Also note that

the plots for the 480 GTX stop at 60 million elements, at which point the GPU

memory is exhausted.

4. Conclusions

The performance results show a surprising amount of variation, even between im-

plementations of the same fundamental algorithm, and no single library provides

optimal performance across multiple devices and problem sizes. This highlights the

amount of tuning required to achieve optimal performance on GPUs.

For CUDA applications, CUB has significantly higher performance than any

of the alternatives, except for small sorts; for OpenCL applications, CLOGS gives

reasonable all-round performance, while VexCL does well at sorting. If one is only

interested in sorting and scanning rather than other features of the library, then

Thrust, Bolt and Boost.Compute do not seem to offer any advantages.

Of course, one should not choose a parallel programming library based only on

the performance of these primitives. Features, ease-of-use, portability, performance

in other areas, and interoperability with other libraries are also important consid-

erations. We recommend that library designers provide low-level access to the data

structures they use, so that users can more easily mix and match libraries to choose

the best one for each primitive. As an example, VexCL allows one to obtain the

OpenCL memory objects encapsulated by a vex::vector, and it provides example

wrappers to perform sorting and scanning through CLOGS or Boost.Compute.

Our benchmark code can be downloaded from https://github.com/bmerry/

ssbench.
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