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Moving least-squares reconstruction of large
models with GPUs
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Abstract—Modern laser range scanning campaigns produce extremely large point clouds, and reconstructing a triangulated surface

thus requires both out-of-core techniques and significant computational power. We present a GPU-accelerated implementation of

the Moving Least Squares (MLS) surface reconstruction technique. We believe this to be the first GPU-accelerated, out-of-core

implementation of surface reconstruction that is suitable for laser range-scanned data. While several previous out-of-core approaches

use a sweep-plane approach, we subdivide the space into cubic regions that are processed independently. This independence allows

the algorithm to be parallelized using multiple GPUs, either in a single machine or a cluster. It also allows data sets with billions of

point samples to be processed on a standard desktop PC. We show that our implementation is an order of magnitude faster than a

CPU-based implementation when using a single GPU, and scales well to 8 GPUs.

Index Terms—moving least squares, surface reconstruction, GPU, out of core.

✦

1 INTRODUCTION

LASER range scanning is a useful tool in recording
a digital model of a building or large site, but

the huge amount of data produced by modern scan-
ning campaigns means that efficient processing remains
a challenge. With billions of point samples, practical
software tools must use out-of-core techniques to deal
with limited RAM, and must also be extremely efficient.
We have implemented a GPU-accelerated reconstruction
system that is able to process massive data sets (billions
of points). Although our system extends standard algo-
rithms, to our knowledge it is the first surface recon-
struction implementation that is simultaneously GPU-
accelerated, out-of-core, and suitable for use with range-
scanned data. It also supports execution using multiple
GPUs, either in a single machine or in a cluster.

Our data are often noisy and contain small alignment
errors which must be smoothed, making methods that
simply triangulate the given sample points unsuitable.
To produce an accurate historical record, it is important
that gaps in the scanner coverage are not filled in using
interpolation, which rules out methods based on an
indicator function [1], [2], [3]. We chose the Moving
Least Squares (MLS) surface definition as it handles
noise well without the over-smoothing associated with
Poisson reconstruction, is able to deal with holes in the
surface, and the quality is frequently better than other
modern surface reconstruction techniques [4].

Our system assumes that scans have already been
cleaned, registered, and transformed to a common coor-
dinate system [5]. We also assume that each scan sample
has an associated oriented normal and an estimate of the
local sample spacing — if not already present, these are
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easily computed using information such as the position
of the scanner and the layout of the scanning grid. We
refer to such augmented samples as splats. Each splat has
a sphere of influence which defines a local neighborhood:
the sphere is centered on the sample position and the
radius is the sample spacing estimate scaled by a global
user-provided smoothing factor.

To handle the huge data sizes, we spatially partition
the data into bins which are small enough to be pro-
cessed on a GPU. Plane-sweep approaches can require
up to 10% of the data set to be resident in memory at
once, which is infeasible for our largest data sets; hence,
we use variably-sized cubic bins [6]. The MLS surface is
an implicit surface, so we apply an isosurface extraction
algorithm to each bin to produce a mesh. The per-bin
operations all run on a GPU, and are discussed in more
detail in Sec. 3. Once all the bins have been processed,
these per-bin meshes are stitched together and further
processed to produce the output file. This is covered in
Sec. 4.

Even using a GPU for acceleration, a large data set can
take hours to process. To further accelerate processing,
we can distribute different bins to different GPUs. In
Sec. 5 we describe our implementation for multiple
GPUs in a single machine or in a cluster.

Sec. 6 shows that our single-GPU implementation
provides an order-of-magnitude speedup over previous
CPU-based approaches, with billions of samples pro-
cessed in hours rather than days; furthermore, our multi-
GPU implementation achieves almost linear speedup
with up to 8 GPUs on large data sets. This is achieved
while providing a hard bound on GPU memory usage.

2 BACKGROUND

Surface reconstruction from point clouds is a well-
studied field, and it is not possible to provide a complete
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survey here: interested readers are referred to previous
surveys [4], [7]. We will list only a few key contributions,
focusing on the methods we have implemented.

Surface reconstruction methods generally fall into one
of two categories. Interpolation methods use the point
samples as vertices in the reconstruction, and compute
a triangulation of the point samples. Because scans are
not always perfectly aligned, interpolation methods may
also create new vertices in overlap regions, but the
majority of vertices are still placed at the point samples.
Approximation methods define a smooth surface that
does not pass exactly through the samples. The smooth
surface is often defined implicitly and so standard iso-
surface extraction methods are used to produce an ex-
plicit representation. Approximation methods (including
the MLS method we used) are better able to handle noise
in the data.

Kil and Amenta [8] use constrained Delaunay triangu-
lations to compute edges, from which they extract and
triangulate polygons. This interpolation-based scheme is
noteworthy as it is the only scheme we are aware of
that is both GPU-accelerated and supports out-of-core
operation. However, it requires the points to be locally
uniformly distributed, which makes it inapplicable to
range-scanned data.

The Poisson approach takes points with oriented nor-
mals, interpolates a normal field, and uses a discretized
Poisson equation to solve for the indicator function. This
algorithm has been extended to support parallel and
out-of-core execution [2], [9] and GPU-based acceleration
[3]. Because it computes the indicator function, it is
guaranteed to produce a water-tight surface. While this
is useful for filling small holes, it is unable to reconstruct
open surfaces such as those shown in Fig. 11.

Another approximation method that has proven popu-
lar is Moving Least Squares (MLS). As this is the method
implemented in our work, it is covered in more detail in
the next section.

2.1 Moving Least Squares surfaces

Alexa et al. [10] define an implicit surface using MLS
data approximation. The MLS approach is based on local
approximations to the surface. From an initial point x,
a surface patch is defined that approximates the surface
in the neighborhood of x. A projection operator P maps
x onto this local approximation. The MLS surface is
defined as the set of points x such that P (x) = x. There
are many variations on this basic formulation, which
mostly differ in how the local patches are defined.

MLS techniques use a per-sample Gaussian-like
weight function to determine the importance of each
sample at a point in space, based on the distance to
that sample. Some authors use a Gaussian [10], [11],
[12], while others use functions with a similar shape but
finite support [13], [14]. The function parameters may
also vary per sample. We use wi to denote the function
applicable to sample i; in some cases we also use wi to
mean the value of this function.

x

P (x)

Fig. 1. Projection operation for APSS. The hollow circles

represent splats, with arrows representing normal direc-

tion and arrow length representing the weight wi(x). The

initial point x is projected onto the fitted sphere to give

P (x).

The standard deviation of the weight function is either
global, or set per-sample based to the local sampling
density. Cuccuru et al. [15] and Fiorin et al. [12] also scale
the weight function based on an estimate of the sample
quality, to prevent low-quality, potentially inaccurate
samples from adversely affecting the reconstruction.

2.1.1 Algebraic point set surfaces

Guennebaud and Gross [13] introduce Algebraic Point
Set Surfaces (APSS), which we use in our implementa-
tion. As with other MLS methods, the surface is defined
in terms of a projection procedure. The difference is that
the surface is locally approximated by a sphere rather
than a plane or polynomial patch. Compared to a plane,
a sphere is better able to capture curvature in the original
surface. Given a point x in space near the surface, the
projection P (x) is computed as follows (see Fig. 1):

1) The splats in the local neighborhood of x are
identified i.e., those for which x falls within the
sphere of influence of the splat.

2) The splats are weighted based on their distance
from x, using the weight functions wi.

3) A sphere is fitted to the splats, using weighted
least-squares to match the positions and normals.
The sphere is represented in an algebraic (implicit)
form, which simplifies the fitting procedure and
robustly decays to a plane.

4) x is projected onto the sphere.

The MLS surface is defined as the set of points for
which P (x) = x. P is not a true projection: in general
P (x) 6= P (P (x)) because the weights at P (x) are not the
same as at x. Alexa and Adamson [16] describe several
iterative procedures for projecting points onto the MLS
surface.

The sphere is described by a vector u of 5 parameters,
defining the implicit surface

0 = Su(x) =
(

xT xTx 1
)

u. (1)

Since a sphere can be described by 4 parameters, there is
an extra degree of freedom: specifically, λu describes the
same surface for any λ > 0. The gradient of the implicit
function is

∇Su(x) =
(

I3 2x 0
)

u. (2)
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For each splat with position pi and normal ni, we have
two linear constraints:

Su(pi) = 0 (3)

∇Su(pi) = ni. (4)

The normal constraints are necessary to compensate
for the extra degree of freedom, because the position
constraints are trivially satisfied by u = 0. Guennebaud
et al. [17] solve for the normal constraints first to com-
pute four of the coefficients, and then use the position
constraints only to compute u4 (which determines the
radius of the sphere). They give the following explicit
formulae:

u3 =
(
∑

wi)(
∑

wip
T

i
ni)−(

∑

wipi)
T (

∑

wini)

(
∑

wi)(
∑

wip
T

i
pi)−(

∑

wipi)T (
∑

wipi)
(5)
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∑
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∑
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∑
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(6)

u4 =
−

(

u1 u2 u3

)

∑

wipi−u3

∑

wip
T

i
pi

∑

wi

. (7)

APSS is attractive for data-parallel implementation be-
cause each projection step is given by closed formulae,
and hence the number of operations does not depend on
the data.

2.2 Out-of-core reconstruction

Fiorin et al. [18] sort the samples in each scan in Morton
order [19] and construct an in-memory octree over them.
The sort ensures that each octree node corresponds to a
contiguous part of the file. Octree leaves are then loaded
on-demand for MLS-based reconstruction. Because each
sample is stored in only one octree node, evaluating
the MLS projection may require many nodes to be in
memory at once. There is no analysis of the cache size
necessary to prevent excessive loading and unloading of
octree nodes.

Cuccuru et al. [15] also perform out-of-core MLS re-
construction, but use a streaming approach. The points
are sorted along an axis, then processed in a single pass,
keeping an active set in memory. Bolitho et al. [2] also
use a streaming approach but use a Poisson method
for reconstruction. A major limitation of streaming ap-
proaches is that the in-core memory requirements are
heavily data-dependent, and can be as much as 10% of
the entire data set [20].

Bernardini et al. [21] extend their ball-pivoting al-
gorithm to run out-of-core by processing the data in
slices. Since the algorithm assumes a global bound ρ

on the radius of a neighborhood, it is a simple matter
to determine which points must be memory-resident.
Rather than sorting the points along an axis, they load
a complete scan when it intersects the active slice, po-
tentially requiring even more memory than streaming
approaches.

2.3 Acceleration using GPUs

Graphics processing units (GPUs) were originally de-
veloped for rendering 3D graphics, but have since
been used for more general-purpose processing due
to their high performance on data-parallel tasks. Our
implementation uses OpenCL [22] to target GPUs for
the performance-critical steps in surface reconstruction.
In OpenCL terminology, computation is done at three
scales: kernel, work-group and work-item. Each time
the API is invoked to execute code on the GPU, it
executes a single kernel (piece of code) on multiple
work-groups, each of which contains multiple work-
items. Work-groups are significant because the work-
items in a work-group can share data and synchronize
with each other. Readers more familiar with CUDA [23]
may substitute thread-block and thread for work-group
and work-item, respectively.

While OpenCL is portable across a range of devices
(including CPUs), maximizing performance still requires
tuning for a particular architecture. We have targeted the
NVIDIA Fermi architecture [23]. Fermi devices contain
up to 16 compute units, each of which contains an L1
cache and a fast local memory space that is shared by a
work-group. Work-items are scheduled in groups of 32,
called warps, which execute in lockstep. Divergent flow
control within a warp is inefficient as both sides of the
branch are executed. Tens of thousands of threads are
required to fully saturate a device. The design thus en-
courages data parallelism, where large numbers of work-
items run the identical sequence of operations. Memory
transactions are also performed at the warp level, with
fewer transactions (and hence greater throughput) if the
work-items in a warp all access the same cache line
rather than performing scattered accesses.

3 IN-CORE PROCESSING

We start by describing our algorithm for a subset of
data that can be held and processed entirely within GPU
memory. The input is a cuboid volume to process along
with all samples whose spheres of influence intersect
this volume, and the output is a triangle mesh for the
portion of the MLS surface that falls inside the volume.
This forms the basis for our out-of-core algorithm, which
divides the full data set into bins that can be processed
by this in-core portion. A bin is further subdivided
into cubic cells, which form the grid used for isosurface
extraction.

A key goal in our design is to bound GPU memory
usage. Thus, some design choices are made for their
worst-case rather than average-case memory usage. In
particular, we limit not only the number of splats, but
also the spatial dimensions of bins. By default our system
imposes a maximum bin size of 256× 256× 256 cells.
We use APSS (Sec. 2.1.1) to define the implicit surface.

Although APSS has been implemented on a GPU before
[17], tuning for GPU architectures has not previously
been discussed in detail.
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Fig. 2. Data flow in the system. The blue boxes represent

independent threads connected by queues, while italics

indicate data on disk.

We initially used the following weight function:

φ(d) =

{

(1− d2)4 if d < 1

0 otherwise,
(8)

wi(x) =
1

r2
i

φ

(

‖pi − x‖

ri · h

)

, (9)

where φ is an approximation to a Gaussian (but with
finite support), ri is the sample spacing estimate around
point i, and h is a global smoothing factor. We later modi-
fied this function slightly to avoid numerical instabilities,
as described in Sec. 3.2.

The algorithm is driven by a fully-refined octree built
over the point samples (Sec. 3.1). Sec. 3.2 describes
how we measure the implicit function that defines the
MLS surface. We combine this with Marching Tetrahedra
to produce a triangle soup (Sec. 3.3), which is then
converted to a triangle mesh by welding shared vertices
(Sec. 3.4). The box marked “GPU” in Fig. 2 shows the
data flow between these stages.

3.1 Octree construction

When sampling the implicit function giving the signed
distance to the MLS surface, we have a point x in space
and need to iterate over all samples whose spheres of
influence intersect x. This is a standard spatial indexing
problem, which can be accelerated by a variety of data
structures. We use an octree as it is simple both to
construct and to query, and has successfully been used
in previous work on surface reconstruction [2], [15].

Guennebaud et al. [17] investigated several octree im-
plementations for MLS projections on a GPU, and found

that a “redundant pyramid” gives high performance and
low construction times. The term “pyramid” indicates
that the octree is fully refined, with each level stored
as a dense array in memory. It is “redundant” in that
each splat may be listed in multiple nodes, so that all
the splats intersecting a leaf are listed in that leaf or
an ancestor. This makes the data structure larger, but
eliminates the need to consult neighbors during a walk
of the tree. Although Zhou et al. [3] have since devised a
practical non-redundant octree representation for GPUs,
we use a redundant pyramid as the octree query time is
critical to performance, and a pyramid has good worst-
case memory usage.

We depart from previous work in performing queries
bottom-up rather than top-down, which avoids the need
to determine which child to visit as there is only a single
parent. When assigning each node an index, we use
Morton order [19], which has better spatial coherence
than a scan-line ordering, and allows the index of the
parent to be found using simple arithmetic on the index.
Because the memory usage increases exponentially with
the depth of the octree, it must be bounded: this is why
we impose a maximum spatial size on bins.

We must still decide at which nodes of the octree to
place each splat. Similarly to Guennebaud et al., we list
each splat in the nodes it intersects on a single level of
the tree, chosen as the finest level whose nodes’ side
length is greater than the diameter of the sphere of
influence. In effect, the sphere is rasterized into a grid
at the chosen resolution. Fig. 3 shows a 2D example.
This choice guarantees that the sphere will intersect at
most 8 nodes, and hence the required memory per splat
is bounded. This choice of level is also invariant to the
alignment of the octree, which is important as it ensures
that queries at the boundary between two bins will
return samples in a fixed order, independent of which
octree is consulted.

We designed the octree encoding to allow the relevant
sample IDs to be examined in parallel. A single array of
integers, the sample ID array, contains both the sample
IDs for each node and metadata indicating the start and
end of each node. Specifically, a node with M samples
is described by a contiguous block of M +2 integers, as
shown in Fig. 4:

1) the index of the last integer in the block (end index);
2) the sample IDs of the samples contained in node;
3) the index of the start of the nearest non-empty

ancestor node, or −1 if there is none (parent index).

This metadata allows walking from a node upwards
through the tree, but additional information is needed
to start a walk. A start array is indexed by the Morton
code of a leaf, and indicates where to begin a walk in
the sample ID array.

This octree structure is produced in parallel on the
GPU. First, each sample is examined to determine the
octree nodes in which it will be entered; these are written
as eight entries in an array of node indices, with a
sentinel value used to fill unused slots. This array is then
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Fig. 4. Sample ID array (top) and start array (below) for the example above. In the sample ID array, underlined numbers

encode indices within the array (indicated with arrows) while the other numbers index the actual samples. Above the

command array, gray arrows point from the start to the end of the array region corresponding to one octree node, while

black arrow point from the end of one node to the start of the nearest non-empty ancestor. Colors delineate portions

of the array specific to each level. The start array contains indices into the command array (shown by arrows), and the

indices (Morton order) are shown below.

used as sort keys to radix-sort a corresponding array
of sample IDs, such that all sample IDs for a node are
sorted together.

At this point the sample IDs are in the correct order,
but the end and parent indices are missing. To make
space for them, we make use of a parallel prefix sum
[24]. We first determine the appropriate gap in the final
array between each sample ID and the next, namely 3 for
the final sample ID in a node and 1 elsewhere. We then
prefix-sum these gaps to obtain the correct location for
each sample ID. Subsequent passes copy the sample IDs
to these locations and then compute the end and parent
indices.

This construction algorithm has similarities with that
of Zhou et al. [3], but it is simpler as the nodes do not
store information about children or neighbors, and our
encoding is different.

3.2 Computing signed distances

We use Marching Tetrahedra [25] to reconstruct the
surface, which means that we must sample a signed dis-
tance field across a regular grid. Rather than computing
an exact projection onto the MLS surface, we use a single
iteration and take the distance from x to P (x). We found

that this has little impact on quality, confirming previous
work [15].

To perform the calculations on the GPU, we use one
work-item per grid point. Achieving high performance is
challenging, as each grid point has a different neighbor-
hood, possibly with a different size, and so computations
are not purely data-parallel. We reduce these effects and
also save memory by using a lower-resolution octree.
Each octree leaf corresponds to an 8× 8× 8 set of cells,
and we also use this as the work-group size. This loss
of resolution leads to more point-inside-sphere tests, but
since the octree walk is now common to all work-items
in a work-group it can be amortized across them. Within
each octree cell, we alternate between loading up to 256
sample IDs in parallel to local memory, and processing
those sample IDs — see Alg. 1. The value 256 was
found experimentally to give a good balance between
providing enough parallel work for latency-hiding and
not using too much local memory; this is likely to be
quite hardware-specific.

When using a 3D work-group, the Fermi architecture
arranges the work-items using a scan-line order, causing
each warp to cover a 8 × 4 × 1 region. We instead use
Morton ordering to manually map a work-item ID to
3D coordinates, giving a 4 × 4 × 2 region per warp.



TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Compute Morton code c for work-group;
p← start[c];
if p ≥ 0 then

e← IDs[p]; // end position

p← p+ 1;
while p < e do

n← min(256, e− p);
foreach i ∈ [p, p+ n) do in parallel

Read IDs[i] to local mem;
Read position and radius to local mem;

p← p+ n;
if p ≥ e then

p← IDs[e]; // parent index

if p ≥ 0 then
e← IDs[p]; // end position

p← p+ 1;
else

e← −∞
foreach cell corner in work-group do in parallel

foreach splat in local mem do
if cell corner inside splat then

Process splat;
Algorithm 1: Walking the octree to find neighbors. This
code describes the actions for a work-group, with the
work-items used to parallelize the loops marked as
parallel.

This compact shape is more likely to branch coherently
in point-inside-sphere tests and so performance is im-
proved. Note that while there is some cost to decoding
the Morton code, this is done only once per work-item
and is insignificant compared to the cost of iterating over
the neighborhood.

Standard isosurface extraction will create a watertight
surface that separates the inside from the outside. How-
ever, it is common for there to be gaps in scanner cover-
age, making it necessary to have holes in the output. We
achieve this by using a sentinel value, namely floating-
point NaN (not-a-number), to indicate that a cell corner
has neither positive nor negative distance and that no
geometry should be generated for the incident cells. We
use this in a number of cases. Firstly, if fewer than four
splats are found in the neighborhood (which can only
happen far from the surface), the fitting problem can
become ill-conditioned. Ill-conditioning is also a problem
if all but a few weights are very close to zero: to prevent
this, we truncate the weight function to

φ(d) =

{

(1− d2)4 if d2 < 0.99

0 otherwise.
(10)

While this introduces a discontinuity in φ, it is very small
and we observed no ill effects.

We found that in some cases the signed distance func-
tion becomes discontinuous far from the surface. Where
the discontinuity causes a sign change, the isosurface
extraction incorrectly interpolates a vertex. Fig. 5 shows
how poorly registered scans can cause this, although we

a

b

P (a)

P (b)

Fig. 5. Misalignment of scans causes a discontinuity in

the signed distance. The dashed lines represent the two

different scans of the same surface, which have been

misaligned. Query points a and b are close, but a projects

onto the lower sheet and is considered outside, while b

projects onto the upper sheet and is considered inside.

Isosurface extraction infers a spurious isovertex between

a and b.

(a) No pruning (b) With pruning

Fig. 6. Without boundary pruning there are significant

artefacts. Boundary pruning eliminates the artefacts, al-

though it also opens up some holes that were otherwise

filled.

found it to be a problem in other cases as well. The issue
usually occurs at a large distance from the surface, so
we solve it by replacing any distances greater than the
cell diameter with NaN. The isosurface extraction only
requires distances at the corners of cells that intersect the
isosurface, so larger distances can safely be discarded
without introducing holes.

The final case in which we use NaN is for explicit
detection of boundaries, to prevent extrapolation. While
the finite support of φ limits extrapolation, Fig. 6 shows
that it remains a problem. We use the same approach as
Adamson and Alexa [14]: a point v on the isosurface is
classified based on its distance to the weighted mean p

of its neighboring samples. If v is in the interior of the
surface, then p will be close to v, but if v lies outside
the boundary (as in Fig. 7) then they will be far apart.

To make the test scale-invariant, we classify P (x) as
extrapolated if

∥

∥

∥

∥

∑

wi(x)pi
∑

wi(x)
− P (x)

∥

∥

∥

∥

> γ

√

∑

wi(x)‖pi − P (x)‖2
∑

wi(x)
. (11)
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p

Fig. 7. Boundary detection. Given a point v on the

MLS surface, the neighborhood pi is used to compute

a weighted mean p. If v lies outside the boundary, the

neighborhood will be skewed to one side of v and so p

will be far from v.

Here γ is a tuning factor which allows the user to
either increase boundary removal to obtain more certain
results, or reduce it to cause more small holes to be
filled. The default value is γ = 512

√

6
693π ; the derivation

of this value can be found in the appendix (see sup-
plementary material). Note that we have used wi(x)
rather than wi(P (x)): while marginally less accurate, it
is significantly faster as it allows all the sums computed
for (5)–(7) to be reused without a second pass over the
neighborhood to compute new weights.

3.3 Isosurface extraction

To keep the implementation simple we avoid using an
isosurface extraction technique that adapts its resolution
to the sample density. In many cases the variations in
sampling density are unwanted, such as oversampling
where scans overlap and undersampling in hard-to-
reach areas, and adaptive reconstruction will lead to
unnecessary detail in the former and visible edges in the
latter. This assumption can still be a limitation, such as
when a building is to be reconstructed at high resolution
while a large area of surrounding landscape needs only
low resolution.

We chose Marching Tetrahedra for isosurface extrac-
tion as it is simple to implement while avoiding the
ambiguities in Marching Cubes [26]. It also interpolates
more vertices and hence potentially gives a smoother
surface for the same number of distance field evalua-
tions. As in standard Marching Cubes implementations,
the sign of the distance field at each corner of a cell is
used to build an 8-bit cell code, which is used to index
lookup tables defining the geometry.

Isosurface extraction is performed on the GPU, in a
manner similar to previous work [3], [27]. Since the
isosurface extraction accounts accounts for less than 20%
of runtime, we have not done any extensive optimization
or comparison of alternative techniques.

Most cells in the grid produce no geometry, and using
a work-item for every cell would waste a large number
of work-items. Instead, we do an initial pass to build a
list of all cells that will produce geometry (Alg. 2), and
following passes use a work-item per element in this

Data: Nv : table of number of vertices per cell code
Data: N t: table of number of triangles per cell code
Input: D: distance field
Input: [z0, z1): range of slices to process
Output: L: list of non-empty cell coordinates
Output: Sv : number of vertices per slice
Output: St: number of triangles per slice
foreach cell in slices [z0, z1) do in parallel

Generate cell code c from D;
if c 6= 0 and c 6= 255 and no corner is a NaN then

Append cell to L;
Increment Sv

cell.z by Nv
c
;

Increment St

cell.z by N t
c
;

Algorithm 2: GPU isosurface preprocessing
(GenerateCells). This runs on the GPU, with a
separate work-item per cell.

list. As described in the previous section, cell corners
may have the distance set to NaN to signal a hole: this
is handled in this pass by skipping cells where at least
one corner is a NaN.

Subsequent passes determine the number of vertices
and triangles per cell, compute prefix sums of those
counts, and generate the geometry to output buffers. The
triangles generated within a single cell form an indexed
mesh, but vertices on cell boundaries are duplicated for
each available cell. While this increases the number of
interpolations, it ensures that cells can be processed in
parallel without dependencies. Another pass, described
in the next section, is used to merge the shared vertices
and produce a connected mesh.

There is not enough GPU memory to guarantee that
an entire 2563-cell bin can be processed in a single pass:
in the theoretical worst case, each cell will generate 13
vertices and 36 indices, or 300 bytes per cell. Instead,
we process the bin in swaths of N = 24 slices at a time.
Since unextended OpenCL does not allow writes to 3D
images, we store the distance field in a 2D image with
slices packed along the Y axis; using N = 24 guarantees
that this image will not exceed 8192 pixels in the Y
direction (the minimum required support for OpenCL).
We alternate between computing the distance field for
N slices and generating geometry for those slices. Note
that since each slice has corners both above and below,
we actually need N + 1 slices of the distance field at a
time. The extra slice is copied from the previous swath.

Even with this reduction in memory requirements, we
still do not have enough memory for the worst case.
We allocate enough memory to hold the worst case for
just two slices, which in actual use is usually sufficient
to hold the output for the entire bin. As we prepare a
swath, we count the number of vertices and triangles
that will be emitted for each slice, and if necessary
we subdivide the swath into manageable pieces. This
is shown in Alg. 3. If the buffers are not large enough
to hold the output for the entire bin, the bin is split.
Each sub-bin produces a separate mesh, with boundary
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vertices duplicated. We deal with stitching the meshes
back together as part of our out-of-core algorithm in
Sec. 4.2. In our test cases, fewer than 10% of bins are
split, and fewer than 0.01% of swaths are subdivided.

Input: [z0, z1): a range of slices to process
Input: D: distance field
In/Out: Bv, Bt: buffers for vertices/triangles
L, Sv, St ← GenerateCells(z0, z1);
Ct ← Bt.capacity;
Cv ← Bv .capacity;
if

∑

Sv

i
> Cv or

∑

St

i
> Ct then

a← z0;
while a < z1 do

// Find range [a, b) that fits

b← a+ 1;

while
∑

b

a
Sv

i
≤ Cv and

∑

b

a
St

i
≤ Ct do

b← b+ 1;
if b = z1 then break;

DoSlices(D, a, b, Bv, Bt);
a← b;

else
Rt ← Bt.remaining;
Rv ← Bv.remaining;
if

∑

Sv

i
> Rv or

∑

St

i
> Rt then

Split bin at z0;
// Also clears the buffers

MakeGeometry(D, L, Bv, Bt)
Algorithm 3: CPU code for processing a range of slices
(DoSlices). Splitting the bin means completing the
rest of the GPU pipeline (particularly welding, Sec. 3.4)
on the currently buffered geometry and emitting a com-
pleted mesh, before clearing the buffers and starting a
new mesh.

3.4 Welding

Our isosurface extraction algorithm emits only a par-
tially indexed mesh for each bin: vertices shared between
cells are duplicated, and must be unified. When a bin is
complete, either by splitting or at the normal completion
of a bin, we post-process the buffers on the GPU to
achieve this.

During the isosurface extraction we emit a 64-bit vertex
key alongside each vertex. Each vertex is generated by
interpolation along an edge, so we use the coordinates of
the midpoint of the edge to form the vertex key, encoded
in fixed-point and packed into the 64-bit integer. Since
the vertex key depends only on the edge and not on the
cell that generated the vertex, duplicates can easily be
identified as they have the same key.

The welding process is performed on the GPU using
several passes. The vertices are first sorted by key, then
compacted to preserve only one copy of each vertex. Ver-
tices are stored with their original index in the otherwise
unused w component, which we use during compaction
to build a table mapping the original to the compacted

index. This table is then used to rewrite the triangles
in-place to use the compacted IDs.

4 OUT-OF-CORE PROCESSING

To extend the in-core algorithm from the previous sec-
tion to an out-of-core algorithm, we partition the space
into cubic bins and then process each bin in-core. To
process a bin correctly, we must load all samples whose
spheres of influence intersect the bin, even if the sample
point lies outside the bin. This causes boundary samples
to be loaded multiple times. We thus wish to minimize
the size of the boundaries, which we do by choosing the
bin sizes adaptively to maximize use of the available
memory.

The in-core algorithm is run independently on each
bin to produce a mesh. The per-bin meshes are then
stitched together to produce a single output mesh. The
in-core algorithm needs to be carefully implemented to
avoid introducing cracks at the boundaries between bins,
which can easily happen if floating-point computations
are not performed identically.

The process runs in three phases, shown in Fig. 2:

Phase 1 The splats are read to compute a bound-
ing box, and to identify runs of splats that
lie close to each other. This phase is nor-
mally I/O-bound, although we have ob-
served it to be CPU-bound when using a
high-performance distributed filesystem.

Phase 2 Most of the work occurs in this phase. The
bins are computed and their splats loaded,
the in-core algorithm is run and the result-
ing per-bin meshes are post-processed and
written to disk. This phase is usually GPU-
bound.

Phase 3 The per-bin meshes are loaded from disk.
Spurious components are removed, and the
remaining geometry is written to the output
file. This phase is normally I/O-bound.

4.1 Binning

The technique used for binning is described in our
previous work [6]; we provide only a brief overview
here. The bounding box is divided into a grid, with a
sufficiently high density that the majority of grid cells
will be small enough, both spatially and in number
of splats, for the in-core algorithm. We have found
heuristically that making this grid 63 times coarser than
the isosurface extraction grid works well. During Phase
1 we determine which grid cells contain each splat, and
use run-length encoding to compress runs of splats that
intersect the same grid cells. At the start of Phase 2 we
build a hierarchical histogram over this grid, and use it
to select the bins. Each bin is a cube of grid cells. In some
cases a single grid cell will intersect too many splats, in
which case it is recursively reprocessed using a higher-
resolution grid covering only the original cell.
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After bins are chosen, the runs are reprocessed to build
a list of splat IDs per bin. To process a bin, we use this
list to load the splats from disk and then apply the in-
core pipeline described in Sec. 3.

This approach minimizes I/O bandwidth by avoiding
an external sort, but at the cost of more random accesses
to the original data. The efficiency of the I/O operations
improves with larger bins: in the limit, there would be
only one bin, and all the points would be loaded in a
single pass. However, the number of splats per bin is
constrained by the GPU memory requirements of the in-
core algorithm, which needs space for not just the splat
data but also the octree. We found that I/O performance
was improved by grouping bins together for loading:
as bins are generated, they are held in a buffer until a
threshold on their combined splat count is reached. The
splat ID lists for these bins are then merged to generate
a list of ranges to load from disk to CPU memory, after
which the splats are distributed to their respective bins.

This batching process causes incoming splat data to
become available in bursts with long gaps in between,
which could easily stall the GPU processing. To smooth
out the delivery of data to the GPU we use a large
buffer on the CPU, and a separate upload thread which
transfers samples from this buffer to GPU memory a bin
at a time, as GPU memory becomes available.

4.2 Stitching

After the bins are processed, we have a stream of mesh
fragments that need to be stitched back together into
a whole mesh. Note that the boundaries are already
consistent, as the fragments are pieces of the same
global surface1; the stitching is needed only to unify the
boundary vertices that are duplicated in the respective
fragments. At this stage we also apply another cleaning
step: there are often spurious isolated pieces of surface
disconnected from the main body, as shown in Fig. 8.
We follow Meshlab [28] in removing components whose
size (in vertices) falls below a threshold percentage of
the total. Since the total is not known until the end of
Phase 2, it is not possible to do this pruning until after
Phase 2 is complete.

The stitching is distributed across two phases. Most
of the work is done in Phase 2, in parallel with GPU
processing. Phase 2 is dominated by the GPU work
and so this part of the stitching has minimal impact
on overall runtime. In Phase 3 we are able to quickly
determine which components are to be retained, and the
bulk of the work consists of reading this geometry from
temporary storage and writing it to PLY files.

The stitching process shares some similarities with the
intra-bin welding described in Sec. 3.4, particularly the
idea of a vertex key. We modify the definition of vertex
keys used in that step so that the top-most bit indicates

1. This does require careful implementation to ensure that floating-
point computations are performed identically on each side of the
boundary.

(a) Before removal (b) After removal

Fig. 8. Removal of isolated components

Fig. 9. Identifying components. The thick lines delineate

bins, and each clump is given a different color. The

external vertices are marked with dots. Note that global

information is required to correctly identify small compo-

nents for deletion: the blue clump (bottom) contains only

one triangle, but is part of the largest global component.

whether a vertex is internal or external. External vertices
are those on the boundary of the bin, and hence may
be duplicated in a neighboring bin. Setting the top bit
in the vertex key causes the external vertices to be
sorted together, making it easier to extract them. The
stitching works on the premise that the bins are large
enough that there are relatively few external vertices,
and hence information about them can be kept in-core
while internal vertices are kept out-of-core.

As each per-bin mesh fragment is received during
Phase 2, we apply several processing steps. Firstly, we
identify components within the fragment; we call these
clumps (see Fig. 9). Each component of the entire model
consists of one or more clumps, joined together by their
duplicated external vertices, and we arrange them in
a disjoint set data structure [29]. To update this data
structure we use a hash table that maps each external
vertex key to a clump that contains it. We update the
data structures by iterating over the external vertices: if
a vertex key already appears in the table then we can
merge components; otherwise we update the table.

The final step in Phase 2 is to move each clump out-
of-core by writing it to temporary files. In this step we
also eliminate external vertices that have already been
written.

In Phase 3 we use the disjoint set data structure
to identify the components. The data structure is aug-
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mented to track the number of vertices in each compo-
nent, so we can quickly determine which components
should be eliminated. Then, we write the clumps that are
in retained components to the output file. This involves
yet another re-indexing operation, as the final position
of vertices in the output is not known until this point.

5 SCALABILITY

We can further improve performance by utilizing mul-
tiple GPUs. Note that this will only accelerate Phase
2, as Phases 1 and 3 do not use GPUs. The degree of
acceleration will depend on the extent to which Phase
2 is GPU-bound (rather than I/O-bound), but we have
obtained good results with up to 8 GPUs.

5.1 Single machine, multiple GPUs

Our binning scheme makes multi-GPU support almost
trivial. In Fig. 2, we replace the single thread for GPU
processing with a separate thread per GPU. No inter-
GPU communication is required, and in fact we use
a separate OpenCL context for each GPU. It is even
possible to use a heterogeneous configuration combining
GPUs and CPUs, although we found that in practice
this starves the other CPU threads and leads to load
balancing issues due to the large mismatch in per-
formance. Heterogeneous environments also risk intro-
ducing cracks at the boundaries between bins, due to
variations in floating-point computation.

Because memory is not shared, each GPU has a sep-
arate queue for incoming work. A dedicated upload
thread blocks until any GPU queue has sufficient space
for the next bin, and then transfers it. If there are multiple
options, the emptiest queue is selected. This tie-breaker
is mainly important when starting up, to ensure that the
GPUs are all given some work as soon as possible.

5.2 Distributed memory clusters

We further extended our implementation to run on a
cluster using MPI [30]. All three phases are distributed
across nodes. Because the system is designed for out-of-
core operation, most large-scale data movement occurs
implicitly through the shared filesystem, with MPI mes-
sages used for passing control messages.

Phase 1 is almost trivially parallelizable: the splats
are partitioned, and each node loads and processes its
assigned portion of the splats. This produces a separate
index file per node. Rather than stitching these files back
into a single index, we keep them separate and iterate
over them during Phase 2.

In Phase 2 we compute the bins on only the master
node, as this is reasonably fast and would be complex
to distribute. As before, the master node batches bins
into groups that are more efficient to load, but it does
not actually perform the loading. Instead, it sends the
metadata for a batch (bounding boxes and splat ID
ranges) to the next available slave node. The slave loads

Input

samples
Index

Load
bins

Compute and
batch bins

Upload

GPU GPU

Download
Identify
clumps

Clumps

bin
batchesbins

bins bins

MasterSlave

Fig. 10. Phase 2 data flow in a cluster. Each dotted box

represents one node in the cluster and the double arrows

show data passed by MPI messages. Only one of the

slaves is shown. The master may also act as a slave if

it has GPUs. Color-coding is as for Fig. 2.

the splats and processes them on its GPU(s). At the end
of the pipeline, the mesh is sent back to the master for
component detection and to be written to file. This is
shown in Fig. 10.

In Phase 3 we use one of two parallelization strategies,
depending on whether the results are being split into
multiple output files (see 5.3). If they are, then each node
takes responsibility for a subset of the output files. If not,
then each node takes responsibility for a subset of the
clumps, and the MPI-IO routines are used to ensure safe
parallel access to the single output file.

These design choices are sufficient to achieve good
scaling on the small number of GPU-equipped nodes
available in our cluster, but we expect that for larger-
scale use (dozens of GPUs) it may be necessary to move
more of the mesh processing onto the slave nodes.

5.3 Chunked output

Many software tools do not operate out-of-core and so
are unable to handle very large output files. To allow
the output of our system to be used with such tools,
we have implemented the ability to split the output into
chunks using a regular grid, with each chunk written to
a separate file. Boundary vertices are duplicated so that
every triangle appears in exactly one output file.

When one GPU is used, this requires only a few minor
changes to the pipeline. We choose bins independently
for each chunk in the grid, and the chunk ID is passed
down the pipeline. We write each output file in turn
before starting on the next one (although there is some
overlap because we use asynchronous I/O).

When using multiple GPUs, bins do not necessarily
complete in the same order as they are dispatched,
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which causes the intermediate storage of the clumps
for a single output file to be non-contiguous. We found
that, particularly on a cluster, this severely affects I/O
performance. We experimented with placing barriers
in the queues to constrain ordering, but these barriers
became a bottleneck that prevented full utilization of
the GPUs. Instead, we use a reordering buffer: before the
intermediate results are written to disk, they are stored
in an in-memory buffer. Once the buffer size exceeds a
threshold it is flushed to disk, with the clumps written
in order of increasing output chunk ID. This does not
completely order the intermediate data, but it improves
it to the point where OS-level caching is effective.

6 RESULTS

For testing we used two systems. The first is a desktop
machine with a Core i7-2600 (4 cores, 8 threads, 3.4GHz),
16GiB RAM, two 3TB hard drives with software RAID-
0 giving read speeds of 250MiB/s, and a single NVIDIA
GeForce GTX 480. The second system is a GPU cluster,
where each node has two Xeon E5530 CPUs (4 cores, 8
threads, 2.4GHz), 12GiB of usable RAM, and up to three
Tesla C2070 GPUs; the nodes are connected to storage
using Infiniband and the filesystem can deliver up to
3GiB/s of read bandwidth.

Table 1 lists the data sets we used in our experiments.
The Pisa Cathedral dataset came without density esti-
mates, so we used Meshlab [28] to estimate them on
a per-scan basis and then clamped them to 100mm to
prevent outliers from causing artefacts. We also used a
larger smoothing factor for Pisa to handle registration
errors. Fig. 11 shows our reconstructions.

The times in Table 1 are total running time for the
desktop system. Fig. 12 shows how this time is split
across the phases. It is clear that Phase 2 dominates
the running time. In most cases, Phase 2 is GPU-bound,
but for the Siq, Phase 2 is at times I/O-bound on splat
loading. This suggests that the input files have less
spatial coherence than in the other data sets.

Unfortunately we found the driver support for
OpenCL event profiling to be unreliable, so we cannot
provide an accurate profile of GPU activity. Discarding
obviously invalid profiling results suggests that distance
field computations dominate GPU execution time (75–
95%), with the remaining time more-or-less evenly split
between octree construction and isosurface extraction.

Table 2 shows how memory is allocated for the largest
dataset. We have allocated a large buffer to hold splats,
but this could be reduced if necessary at the expense
of more scattered I/O. The unbounded allocations are
dominated by the data held for each external vertex.
Most of this is consumed by hash table overheads: each
external vertex requires 24 bytes of storage, but the hash
tables consume 130 bytes per external vertex. It is thus
possible to reduce memory requirements by using a
slower but more memory-efficient data structure.

Table 3 compares performance against that of previous
work. Since results are sensitive to hardware, data sets

and tuning parameters, this is only useful for order-of-
magnitude comparisons. It is clear that GPU acceleration
gives an order-of-magnitude speedup. Our implemen-
tation is significantly faster than previous out-of-core
systems, and has comparable performance with in-core-
only GPU-accelerated Poisson reconstruction.

We can more directly measure the speedup due to the
GPU by running our code using a CPU-based OpenCL
implementation. This took 5,399 s, indicating a 21.5×
speedup on the GPU. It should be noted that while the
kernels execute across all CPU cores, they have been
tuned for a Fermi GPU and are likely to be suboptimal
for a CPU.

Figure 13 shows the effect of using multiple GPUs and
nodes, on Phase 2 and on the total runtime. It is clear
that scalability is best for the larger and slower data sets
— which are the ones where acceleration is the most
valuable. We believe this variation is due to the coarse-
grained distribution of work and the deep queues: once
there is no further work to distribute, some nodes will
drain their queues earlier than others and will then sit
idle. For larger data sets, this is a smaller proportion
of the total time and so has less impact. The smaller
data sets do particularly badly on the 7 and 8 GPU
configurations because these are unbalanced: they each
add a node with only one GPU, so it is much more likely
that the two 3-GPU nodes will finish early and sit idle.

7 CONCLUSIONS AND FUTURE WORK

We have presented a complete system for GPU-
accelerated reconstruction of extremely large range-
scanned surfaces — to our knowledge, the first such
system. Although MLS surfaces are not an ideal fit
for the data-parallel execution model of modern GPUs,
we still achieve an order-of-magnitude speed-up over a
multi-core CPU implementation. Our approach is also
easy to adapt to multiple GPUs, and it scales well, at
least for the relatively small number of GPUs in our
cluster. Spatial binning provides a hard bound on the
GPU memory required, and thus GPU memory does not
limit the sizes of models that can be processed.

The main barrier to scalability is currently the memory
required for external vertices. With the right data struc-
tures, it is likely that external vertices could be kept on
disk and loaded only as needed for stitching. When a
bin is completed, only its neighbors’ external vertices
are relevant to stitching, and these could be loaded from
disk on-demand. Thus, the relatively large amount of
memory for external vertices seen in Table 2 should not
be seen as a barrier to processing larger data sets.

The quality of our approach is limited by the single-
resolution isosurface extraction. In particular, areas that
are sampled at low density can actually slow down
extraction, because the total volume of the spheres of
influence scales inversely with density. It would thus
be useful to use variable-resolution isosurface extraction.
This will complicate the implementation, as cells on the
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TABLE 1

Data sets used, tuning parameters, and statistics for a single GPU. The peak memory measures only host memory

allocated by our code: additional memory is used by the OpenCL driver, libraries, OS and so on.

Name
Samples
(×10

6)
Size
(GiB)

Bounding box
(m)

Grid
(mm)

h
Output

Verts (×10
6)

Output
(GiB)

Time
(s)

Peak mem
(GiB)

Amman Tower 13 0.4 15 × 15 × 7 10 4 11 0.4 19 4.40

Pisa Cathedral 157 4.1 119 × 89 × 55 20 5 192 6.7 251 7.42

Siq 5,654 163.2 580 × 1,195 × 165 20 4 3,243 114.0 8,628 8.61

Songo Mnara 6,248 180.4 332 × 291 × 24 10 4 3,107 108.3 20,791 10.09

(a) Part of Rujm Al-Malfoouf watch-

tower in Amman, Jordan

(b) Pisa Cathedral

(c) The Siq, entrance canyon to the Nabataen city of Petra in Jordan

(d) Ruins of Songo Mnara in Tanzania

Fig. 11. Reconstructions produced by our system. Left column: overview shots of the whole model. Right: Fine detail

is captured.
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Fig. 12. Time breakdown. Phase 2 is subdivided into
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for in any of the phases, particularly freeing of resources.

TABLE 2

Memory usage for Songo Mnara on the desktop system.

Bold indicates a tuning parameter while italics indicate an

allocation whose size is unbounded. The CPU memory

is not all allocated simultaneously and so the peak usage

is less than the sum of the individual allocations.

Usage
CPU RAM

(MiB)
GPU RAM

(MiB)

Input file buffer 32.0
Splat loading buffer 1,024.0
Binning 808.4
Binned splats 2,048.0 256.0
Pinned memory 128.0
Octree construction 384.1
Octree 128.4
Distance field 6.2
Isosurface extraction 87.4
Mesh data 512.0 56.6
External vertices 2,847.1
Reorder buffer 4,032.0
Output file buffer 34.6
Other 449.5

Peak total usage 10,332.0 918.7

face of each bin may be affected by the size of their
neighbors in adjacent bins. A totally unconstrained oc-
tree [32] may also be difficult to handle in a data-parallel
way: performance may be improved by constraining
each bin to a single resolution. Because sampling the
distance function currently dominates the GPU time,
we expect that using variable resolution will improve
performance in spite of the overheads.

It would be interesting to apply our bin-based ap-
proach to other reconstruction algorithms, particularly
Poisson reconstruction. The main challenge is that the
Poisson equation is a global linear system, and current
out-of-core solutions [2], [9] are tightly coupled with the
plane sweep used to stream the data.
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Fig. 13. Speedup of Phase 2 (solid) and overall (dashed)

with multiple GPUs. For up to three GPUs, a single node

is used. The remaining data points use 2, 3 and 4 nodes

respectively. There are two 3-GPU and two 1-GPU nodes.
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