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Figure 1: Normal transformation methods and their angle errors. (a) Correct transformation (equation (1)). (b), (c) Equations (2), (3) — note
the lack of highlights on the neck and displaced highlights on the body. (d), (e) Errors introduced by equations (2), (3).

1 Introduction

It is well-established that when a matrix is used to transform a rigid
object, the normals should be transformed by the inverse transpose
of that matrix. For skeletally animated models, it is common to
apply this approach to the blended matrix that animates each ver-
tex. This is only an approximation, as it assumes that the blended
matrix is locally constant. We derive a correct method for normal
transformation in skeletally animated models, and examine the er-
rors introduced by two approximations.

Skeletal subspace deformation (SSD) is a simple method for char-
acter animation, based on a linear blend of transformation matrices
[Mohr and Gleicher 2003]. We use the following notation: v′ is the
rest position of some point on the surface, Mi is the 4× 4 matrix
that transforms bone i from its rest position to its dynamic position,
wi is the influence of bone i, and v is the dynamic position. In gen-
eral, a prime indicates a rest pose value, while an over-bar (e.g., N)
indicates the top-left 3×3 sub-matrix of a matrix. SSD is described
by the equation v =

(

∑wiMi
)

v′.

2 Exact solution

We treat the polygonal mesh as an approximation to a differentiable
manifold, with a differentiable weight field for each bone. Consider
a local (s, t) parametrization of the rest surface around a point v′:
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The normal is transformed by the inverse transpose of the top-left
3×3 sub-matrix of the tangent transformation1 (further detail may
be found in Merry et al. [2006]):

n =
(
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∂v′

)

−T
n′

. (1)
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1Normalization will be omitted from all equations to improve clarity.

3 Approximations

For a given rest-pose normal n′, Mohr and Gleicher [2003] mention
two common approximations for the transformed normal n:

n =
(

∑wiMi
)−T

n′ (2)

n =
(
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−T )

n′
. (3)

The first is similar to our exact solution, but does not include the
second term. The second is typically used for efficiency, as the Mi
matrices are independent of the vertices and hence only one inverse
operation is needed per bone per frame, rather than one per vertex
per frame.

4 Results

For the model shown above, the rest normal at each vertex is es-
timated by averaging the surrounding face normals. The weight
gradients ∂wi

∂v′ are similarly computed by averaging the gradients of
the surrounding faces, followed by a projection onto the plane per-
pendicular to n′. Figure 1 shows the results: both approximations
introduce large and quite similar errors (over 60◦ in some places).
Equation (3) has only slightly worse error, most noticeably on the
outside of joints. In our hardware-accelerated implementation, the
two approximations run at the same speed, while our exact solution
is 5% slower. The exact solution is thus suitable for most cases,
although an extra vector ( ∂wi

∂v′ ) must be passed for each influence.
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